Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8261, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38589622

RESUMO

In view of the health concerns associated with high sugar intake, this study investigates methods to enhance sweetness perception in chocolate without increasing its sugar content. Using additive manufacturing, chocolate structures were created from masses with varying sugar and fat compositions, where hazelnut oil served as a partial cocoa butter replacement. The study found that while variations in sugar content minimally affected the physical properties of the chocolate masses, hazelnut oil significantly modified melting behavior and consumption time. Chocolate masses with higher hazelnut oil content but similar sugar content exhibited a 24% increase in sweetness perception, likely due to accelerated tastant (i.e., sucrose) release into saliva. Multiphase structures, designated as layered, cube-in-cube, and sandwich structures, exhibited less sensory differences compared to the homogeneous control. Nonetheless, structures with hazelnut oil-rich outer layers resulted in an 11% increase in sweetness perception, even without sugar gradients. This suggests that tastant release plays a more critical role than structural complexity in modifying sweetness perception. This research highlights the efficacy of simpler multiphase structures, such as sandwich designs, which offer sensory enhancements comparable to those of more complex designs but with reduced manufacturing effort, thus providing viable options for industrial-scale production.


Assuntos
Cacau , Chocolate , Cacau/química , Sacarose , Carboidratos , Nutrientes
2.
NPJ Sci Food ; 7(1): 42, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596255

RESUMO

Additive manufacturing (AM) is creating new possibilities for innovative tailoring of food properties through multiscale structuring. This research investigated a high-speed inkjet-based technique aimed to modify sweetness perception by creating dot patterns on chocolate surfaces. The dots were formulated from cocoa butter with emulsified water droplets containing the sweetener thaumatin. The number and surface arrangement of dots, which ranged from uniformly distributed patterns to concentrated configurations at the sample's center and periphery, were varied while maintaining a constant total amount of thaumatin per sample. A sensory panel evaluated sweetness perception at three consumption time points, reporting a significant increase when thaumatin was concentrated on the surface. Specifically, an amplification of sweetness perception by up to 300% was observed, irrespective of dot pattern or consumption time, when compared to samples where thaumatin was uniformly distributed throughout the bulk. However, when thaumatin was concentrated solely at the sample center, maximum sweetness perception decreased by 24%. Conclusively, both the proximity of thaumatin to taste receptors and its spatial distribution, governed by different dot arrangements, significantly influenced taste responsiveness. These findings present a more effective technique to substantially enhance sweetness perception compared to traditional manufacturing techniques. This method concurrently allows for sensorial and visual customization of products. The implications of this study are far-reaching, opening avenues for industrially relevant AM applications, and innovative approaches to study taste formation and perception during oral processing of foods.

3.
Sci Rep ; 8(1): 10818, 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-30018405

RESUMO

Studies indicate that modulating enterocyte metabolism might affect whole body glucose homeostasis and the development of diet-induced obesity (DIO). We tested whether enhancing enterocyte fatty acid oxidation (FAO) could protect mice from DIO and impaired glycemic control. To this end, we used mice expressing a mutant form of carnitine palmitoyltransferase-1a (CPT1mt), insensitive to inhibition by malonyl-CoA, in their enterocytes (iCPT1mt) and fed them low-fat control diet (CD) or high-fat diet (HFD) chronically. CPT1mt expression led to an upregulation of FAO in the enterocytes. On CD, iCPT1mt mice had impaired glycemic control and showed concomitant activation of lipogenesis, glycolysis and gluconeogenesis in their enterocytes. On HFD, both iCPT1mt and control mice developed DIO, but iCPT1mt mice showed improved glycemic control and reduced visceral fat mass. Together these data indicate that modulating enterocyte metabolism in iCPT1mt mice affects glycemic control in a body weight-independent, but dietary fat-dependent manner.


Assuntos
Dieta Hiperlipídica , Ácidos Graxos/química , Peroxidação de Lipídeos , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Células Cultivadas , Duodeno/patologia , Enterócitos/citologia , Enterócitos/metabolismo , Teste de Tolerância a Glucose , Glicólise , Lipogênese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Obesidade/patologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...